Non-local Cahn–Hilliard equations with fractional dynamic boundary conditions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study ‎of ‎S‎ome Boundary Value Problems Including Fractional ‎Partial ‎Differential‎ Equations with non-Local Boundary Conditions

In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations ‎(FPDE)‎ with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...

متن کامل

Fractional Partial Differential Equations with Boundary Conditions

We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posedness of the associated Cauchy problems in C0(Ω) and L1(Ω). In order to do so we develop a new method of embedding finite state Markov processes into F...

متن کامل

Functional Differential Equations with Non-local Boundary Conditions

In this work, we study an abstract boundary-value problem generated by an evolution equation and a non-local boundary condition. We prove the existence and uniqueness of the strong generalized solution and its continuity to respect to the parameters. The proofs are obtained via a priori estimates in non classical functional spaces and on the density of the range of the operator generated by the...

متن کامل

Damped Wave Equations with Dynamic Boundary Conditions

We discuss several classes of linear second order initial-boundary value problems, where damping terms appear in the main wave equation as well as in the dynamic boundary condition. We investigate their wellposedness and describe some qualitative properties of their solutions, including boundedness, stability, or almost periodicity. In particular, we are able to characterize the analyticity of ...

متن کامل

Boundary value problems for nonlinear fractional differential equations with integral and ordinary-fractional flux boundary conditions

In this paper, we consider a new class of boundary value problems of Caputo type fractional differential equations supplemented with classical/nonlocal Riemann-Liouville integral and flux boundary conditions and obtain some existence results for the given problems. The flux boundary condition x′(0) = b cDβx(1) states that the ordinary flux x′(0) at the left-end point of the interval [0, 1] is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Applied Mathematics

سال: 2016

ISSN: 0956-7925,1469-4425

DOI: 10.1017/s0956792516000504